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ABSTRACT

The FITS world coordinate system (WCS) provides a number of tools for precisely specifying the spatial coordinates of an image.
Many of the finer details that the WCS addresses have not historically been taken into account in solar image processing. This paper
examines various effects which can affect the expression of coordinates in FITS headers, to determine under what conditions such
effects need to be taken into account in data analysis, and under what conditions they can be safely ignored. Effects which are examined
include perspective, parallax, spherical projection, optical axis determination, speed-of-light effects, stellar aberration, gravitational
deflection, and scattering and refraction at radio wavelengths. Purely instrumental effects, such as misalignment or untreated optical
aberrations, are not considered. Since the value of the solar radius is an experimental quantity, the effect of adopting a specific radius
value is also examined. These effects are examined in the context of a previous paper outlining a WCS standard for encoding solar
coordinates in FITS files. Aspects of that previous paper are clarified and extended in the present work.

Key words. standards – Sun: general – techniques: image processing – astronomical data bases: miscellaneous –
methods: data analysis

1. Introduction

In Thompson (2006), hereafter referred to as Paper I, a stan-
dard was described for encoding the coordinates of solar im-
ages within FITS files, building on the world coordinate system
(WCS) described in Greisen & Calabretta (2002) and Calabretta
& Greisen (2002). That standard allowed coordinates to be spec-
ified to a greater level of precision than had previously been com-
monly applied to solar image data. Paper I described standards
for encoding both heliographic coordinates and coordinates in
telescopic images. The latter type of coordinate, labeled helio-
projective, included both cartesian and radial forms.

The present work builds on that previous paper by examining
various effects which may affect the precision of coordinate cal-
culations, in particular those effects which have often been pre-
viously ignored in solar data analysis. The goal of this study is
to determine when common simplifying assumptions are valid,
or when a more detailed coordinate analysis is necessary. In
essence, we aim to “demystify” the WCS formalism. In the fol-
lowing sections, we examine the effects of perspective, parallax,
spherical projection, optical axis determination, speed of light,
stellar aberration, gravitational deflection, and determining the
instrument plate scale based on an assumed value of the solar ra-
dius. The scattering and refraction effects of the coronal plasma
are discussed for radio observations. Purely instrumental effects,
such as misalignment, or optical aberrations not handled by the
spherical projection, are not considered. Such effects are pecu-
liar to each instrument, and their importance is well established.

2. Perspective

Perspective is the property of observing an object from a given
distance. We can characterize the perspective of a solar ob-
servation by the ratio of the viewing distance D� to the solar
radius R�. For some applications it may be appropriate to make

the simplifying assumption that D� � R�, and treat the observer
distance as essentially infinite. Thus, one assumes that

θρ/θ� ≈ ρ/R�, (1)

where θρ is the angular distance of a solar feature from disk cen-
ter, θ� = sin−1(R�/D�) is the angular radius of the solar limb,
and ρ is the radial distance from the Sun-observer line. For heli-
ographic coordinates, the assumption of Eq. (1) is equivalent to
using the orthographic (SIN) projection in place of the perspec-
tive zenithal (AZP) projection, as discussed in Paper I.

The simplifying assumption of Eq. (1) is commonly used
within the solar community. However, the perspective effects
from a distance of 1 AU are significant. The difference in he-
liographic coordinates between perspective and non-perspective
calculations grows in an almost linear fashion from 0 at disk
center to about 16′ at the limb. Performing the calculation in re-
verse, converting heliographic coordinates to either θρ or ρ, the
difference reaches a maximum of just over 2′′ at about 0.7 solar
radii.

For many applications, an error of 2′′ is significant. There-
fore, we recommend that perspective should routinely be taken
into account when converting between helioprojective and heli-
ographic coordinates. Paper I defines the keyword DSUN_OBS to
describe the perspective distance from Sun center of an obser-
vation, together with the keywords HGLN_OBS and HGLT_OBS to
describe the direction that the observation is made from. These
keywords are of particular importance when the observation is
taken at a significant distance away from Earth.

It’s common within solar physics to use the term “solar ra-
dius” both for the physical radius R�, and for the apparent an-
gular radius θ�. However, in Greisen & Calabretta (2002), the
units designator “solRad” is specifically defined as a measure
of distance1. Characterizing solar images as being in “solRad”

1 Note that this means that one cannot combine units of “solRad” with
explicitly angular axis labels such as HPLN-TAN, HPLT-TAN.
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units when the coordinates are actually angular implicitly ig-
nores perspective. Such usage is not recommended when an
error of ∼2′′ would be important.

Perspective also comes into play when comparing observa-
tions made from different solar distances. For any two terres-
tial observers, the difference in perspective will be miniscule
(<0.′′0001). However, the maximum difference between an ob-
server at the Sun-Earth L1 Lagrange point and a terrestrial ob-
servation is just over 0.′′02.

3. Parallax

Except for the heliographic case, the coordinate systems defined
in Paper I are explicitly observer-centric; i.e. topocentric when
viewed from Earth. One possible effect on the accuracy of the
calculated coordinates is parallax. This can be characterized by
the horizontal parallax, which is defined as the pointing differ-
ence between two hypothetical observers, one viewing the Sun
on the horizon, and the other observing from the geocenter. From
a distance of 1 AU, the horizontal parallax of solar disk center is
about 9′′. Two observers located on diametrically opposite sides
of the Earth would see a maximum relative parallax between
each other of twice this amount, or ∼18′′.

However, the coordinate systems of Paper I are defined rel-
ative to solar disk center, so the potential error source that one
needs to consider is the differential parallax between a solar fea-
ture and disk center. For example, consider the point on the so-
lar surface that is disk center for a hypothetical geocentric ob-
server. An observer situated on the day-night terminator would
define a different point as disk center. The heliographic coordi-
nates of this point would be separated from the previous point
by about 0.′′04. Foreshortening decreases the importance of par-
allax as one moves away from disk center along the solar surface.
The effect of parallax can be larger in the corona, again with the
largest effects occuring along the Sun-Earth line.

Another important case to consider is that of a satellite in
geostationary orbit. Given that the semi-major axis of geosta-
tionary orbits is about 6.6 R⊕, the photospheric difference be-
tween hypothetical geocentric and geostationary observers could
be as high as 0.′′3.

A third important case is that of a satellite in a halo or
Lissajous orbit about the L1 Lagrange point between Earth and
the Sun. The effect of parallax for such orbits can be quite
large. For example, the maximum parallax for the SOHO satel-
lite is ∼4′′.

These differences between observers are not errors, since
each set of coordinates is correct for that observer. The po-
tential for error exists when data from two observers are com-
pared without taking the difference in observer position into ac-
count. Greisen et al. (2006) describe the keywords OBSGEO-X,
OBSGEO-Y, OBSGEO-Z for specifying the topocentric coordinates
of an Earth-based observatory, while Sect. 9.1 of Paper I de-
fines keywords suitable for describing the position of a satel-
lite in a variety of coordinate systems, including HGLN_OBS and
HGLT_OBS. Using these keywords removes any potential am-
biguity in the interpretation of the data. These keywords be-
come critical for observatories beyond Earth orbit; for example,
the STEREO mission uses the parallax differences between two
widely separated spacecraft to derive three-dimensional infor-
mation about the Sun.

The OBSGEO-X, etc. keywords of Greisen et al. (2006) are
essentially equivalent to the keywords GEOX_OBS, GEOY_OBS,
GEOZ_OBS of Paper I. However, there is one important distinc-
tion between these two keyword systems. The OBSGEO keywords

are used specifically for terrestrial observatories, and denote not
only the position of the observer, but also that the observer takes
part in Earth’s rotational and orbital motions. The GEOX_OBS,
etc. keywords of Paper I denote location only, and have no im-
plications regarding the observer’s motion.

Paper I described the Carrington heliographic coordinate
system in terms of longitude and latitude, but did not specify
a way to express these coordinates in terms of cartesian x, y, z
values. We therefore correct that lack by reserving the CUNIT
labels CARX, CARY, CARZ. The axes are defined by the follow-
ing relationships to Carrington heliograph longitudeΦC and lat-
itude ΘC:

XC = r cosΘC cosΦC,

YC = r cosΘC sinΦC, (2)

ZC = r sinΘC.

We also reserve the keywords CARX_OBS, CARY_OBS, CARZ_OBS
to store the observer’s position in Carrington coordinates. In
keeping with WCS standards, the values of these keywords will
be in meters.

4. Projection

Projections are the mechanisms the WCS uses to handle the
mapping between the curved space of spherical coordinates, and
the flat data space in which the data are stored. The coordinates
of any image of the Sun will have some kind of spherical projec-
tion associated with it. The selection of the proper projection to
use will often depend on the properties of the optics. For exam-
ple, the optical properties of the Heliospheric Imager telescopes
aboard STEREO are well characterized by the AZP projection,
with a PV j_1 value customized for each telescope (Brown et al.
2009). (Note that this is a distinctly different use of the AZP
projection than the heliographic coordinate case discussed in
Paper I.) In the absence of significant spherical aberration, a typ-
ical solar image is usually best described by the gnomonic pro-
jection, which Calabretta & Greisen (2002) designate with the
mnemonic “TAN” because the distance from the reference pixel
varies as tan θρ. For many solar images, the effect of such pro-
jections is very small, and is often ignored.

A useful metric to characterize the importance of taking pro-
jection into account is the difference between the angle θρ and
the Rθ value for the given projection as defined by Calabretta
& Greisen (2002). For observations taken from 1 AU, the max-
imum difference for the TAN projection is about 0.′′007. As one
moves off the disk into the corona, the difference grows as θ3

ρ.
To a certain extent this effect is mitigated by the fact that instru-
ments with wide fields of view also have large pixels. However,
the effect definitely becomes significant at large radial distances,
and can no longer be ignored. It’s important that solar image
data, particular those from instruments with large fields of view,
correctly designate the spherical projection, using the mecha-
nism described in Paper I and in Calabretta & Greisen (2002).
Aberrations within the optics can often be mitigated by the
proper selection of the projection.

5. Optical axis

The azimuthal projections of Calabretta & Greisen (2002) are
defined relative to a particular reference pixel. For telescope ob-
servations, this pixel represents the optical axis of the instru-
ment. For the purposes of this discussion, we will define the op-
tical axis as that point in the image which, when combined with
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W. T. Thompson: Precision effects for solar image coordinates

Fig. 1. Maximum coordinate errors as a function of radial distance for
optical axis errors of 1′′, 10′′ , 100′′, and 1000′′ respectively, using the
gnomonic (TAN) projection. The vertical dotted line represents the po-
sition of the solar limb.

the selected projection, produces calculated coordinates which
best match the true coordinates over the image. Because most
solar images are best expressed in the TAN projection, and be-
cause this projection tends to be particularly sensitive to errors,
we will devote our analysis to the TAN projection.

It’s not always possible to determine the precise optical axis,
and proxies are often used instead. One common proxy is the
center of the detector. On the other hand, instruments which im-
age the full Sun may use solar disk center as a proxy for the
optical axis. Depending on the instrument design, either of these
may be a good approximation

We define i0, j0 to be the pixel coordinates of the true op-
tical axis, and i′0, j′0 to be the pixel coordinates of the assumed
optical axis. The physical coordinates of each pixel are α0, β0
and α′0, β

′
0 respectively. For simplicity, we assume that the ref-

erence values are correct in each case, and only look at the er-
rors that build up as one moves radially away from the reference
pixel. Thus, for each pixel i, j we calculate α, β and α′, β′ using
the true and assumed optical axes, and then calculate the error
ε =

√
(α′ − α)2 + (β′ − β)2.

Figure 1 shows how the maximum error varies with solar
radii for different cases of optical axis error, ranging from a
small 1′′ error, to a huge (and unlikely) 1000′′ error. (The ac-
tual error varies with position; only the maximum error is plot-
ted.) This plot demonstrates that the coordinate determination is
relatively insensitive to the optical axis determination. Even a
fairly large optical axis error of 100′′ produces an error of only
∼0.′′002 across the solar disk. Off the limb the errors tend to in-
crease as θ2

ρ for any given optical axis error, but are still relatively
small. At any given radial distance, the error at large distances
tends to increase linearly with the optical axis error for the cases
studied.

6. Speed of light

The helioprojective coordinates of Paper I are defined relative to
apparent solar disk center. However, there’s no fiducial on the
Sun marking disk center. Instead, one determines disk center by
calculating the centroid of a fit to the solar limb. It is this cal-
culated position which defines the origin of the helioprojective
coordinate systems of Paper I, as well as the zero longitude of
the Stonyhurst heliographic system.

Because of the finite speed of light, radiation from disk cen-
ter reaches the observer 2.3 s before that from the limb. During
that time, the apparent position of the Sun in the sky will have
changed, and the Sun will have undergone a certain amount of
differential rotation. One must also consider the fact that, overall,
the light coming from the Sun is delayed by the light travel time,
so that the apparent distance D� is different from the instanta-
neous distance at the observation time t. However, from Earth,
this last effect only amounts to ±6 kilometers over the course
of the year – for most applications this is negligable. Therefore,
we will only consider the effects arising from the 2.3 s delay
between disk center and the limb.

Light coming from the limb travels a distance of D� cos θ�
before reaching the observer. From a distance of 1 AU, this dif-
fers from D� only by 1 part in 105, and for practical purposes
can be considered to be the same as D�. Light from disk center
arrives 2.3 s earlier, when the Sun was at a different apparent
location in the sky. From Earth, the average apparent motion in
the sky during 2.3 s is ∼0.′′09, which is how much distortion oc-
curs at disk center due to the differential light travel time effects.
An observatory in significantly closer orbit about the Sun would
show larger distortions, both because of the smaller distance, and
because the orbital speed would be higher.

The latitude of disk center as seen from Earth is restricted to
a region within 7◦ of the equator. At those latitudes, the average
synodic rotation rate is 13.◦34/day. From 1 AU over 2.3 s, this
amount of rotation works out to ∼0.′′006.

7. Stellar aberration

Stellar aberration is the deflection of light due to the transverse
motion of the observer relative to an inertial reference frame
(Stumpff 1979). For terrestrial observations of the Sun, this ef-
fect is maximized because Earth’s orbital motion is essentially
perpendicular to the Sun-Earth line. The average aberration of
the Sun as seen from Earth is ∼20.′′5, with small corrections of a
few × 0.′′1 caused by the eccentricity of the orbit, and by Earth’s
rotational motion at the location of the observatory.

For coordinates defined relative to solar disk center, what is
important is not the total amount of aberration, but the change
in aberration as one moves away from disk center. On the solar
disk, this reaches a maximum of ∼0.′′0002 at the east and west
ecliptic limbs, and can be considered neglible. As one moves
further out into the corona, the effect of differential aberration
increases roughly as θ2, primarily along the ecliptic.

Related to stellar aberration is the phenomenon known as
“planetary aberration”, which is the combination of stellar aber-
ration and light travel time effects. Aside from the zeroth-order
displacement of ∼20.′′5, the planetary aberration effects which
are important for solar observations are discussed in Sect. 6.

8. Solar radius

For some instruments, the only way to accurately establish the
plate scale is to measure the apparent solar radius on the detec-
tor. To convert this into degrees, one must know both the ob-
serving distance D� and the solar radius R�. The latter is an
experimental quantity, and is known only to a certain level of
precision. The current canonical photospheric value is R� =
695.508 ± 0.026 Mm (Cox 2000), which differs significantly
from the previous value of 695.99 ± 0.07 Mm (Allen 1976)
quoted in Greisen & Calabretta (2002). Other values have been
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published, e.g. Schou et al. (1997) quotes 695.68 ± 0.03 Mm.
Individual measurements of the apparent radius can vary by as
much as 0.2% (about 1.4 Mm, or 2′′) between observatories
(Badache-Damiani & Rozelot 2006), and may have a solar cycle
dependence (Delmas et al. 2006).

One possible solution to the uncertainty in the value of R� is
to set CUNITi=“solRad”. This has the advantage of being “ag-
nostic” about the proper value of R�, making it a parameter in
the data analysis. However, as has already been pointed out in
Sect. 2, expressing the coordinates in solRad units ignores the
effect of perspective. Also, unless the coordinates are expressed
in angular units, projection effects cannot be properly accounted
for (Sect. 4). Although projection effects are typically small, they
can be significant at the level needed to address questions of so-
lar oblateness and solar cycle variability of R�.

We believe that a better approach is to express the coordi-
nates in angular units, but to document the values of D� and R�
used in deriving the plate scale, so that they can be backed out if
necessary. To that end, we reserve the FITS keyword RSUN_REF
to store the value of R� used in deriving the plate scale. The units
applied to this keyword will be meters. The value D� is stored
in the keyword DSUN_OBS defined in Paper I. For example, one
might have the following entries in the FITS header:

DSUN_OBS= 1.50713E+11
RSUN_REF= 6.95508E+08.

The principal error resulting from applying the wrong solar ra-
dius is that the perspective will be slightly different than as-
sumed. Let R� be the true solar radius, and R′� be the assumed
radius, with θ� and θ′� being the respective angular sizes from
the distance D�. For our test case, we set R′� − R� = 1 Mm
(∼1.′′4), which should be taken as a worst case scenario. The er-
ror reaches a maximum of about 0.′′003 close to 0.7 solar radii,
and scales as the difference R′� − R�.

Another effect to consider is that of projection errors. As
was done in Sect. 5, we’ll concentrate on the gnomonic (TAN)
projection. The gnomonic plate scale α is defined such that
tan θ = αn, where n is the radial distance in pixels from the ref-
erence pixel. If N is the apparent solar radius in pixels, then the
plate scale can be derived as

α =
tan(sin−1(R�/D�))

N
· (3)

(Other definitions would apply for projections other than TAN.)
We thus have two plate scales to consider, α and α′, derived from
R� and R′� respectively. The error between the derived angles θ
and θ′, defined as

ε =

(
θ�
θ′�

)
θ′ − θ, (4)

reaches a maximum of only 7.7 × 10−6 arcsec around 0.6 solar
radii. From these data, we conclude that the errors in R� have a
negligable effect on the projection calculation.

It’s not uncommon within solar physics to approximate the
plate scale as α ≈ (R�/D�)/N, with the result interpreted as radi-
ans. The difference from the full calculation of Eq. (3) is equiv-
alent to underestimating R� by ∼0.0075 Mm (0.′′010), of which
∼0.0025 Mm (0.′′003) is due to perspective effects, with the rest
being due to the projection.

The minuteness of the errors generated by adopting a value
for R� validates the approach outlined earlier in this section. It’s
more accurate to express coordinates in angular units, using an
adopted value for R� specified by RSUN_REF, rather than to use

“solRad” units. Such an approach allows perspective and pro-
jection effects to be taken into account to a high degree of accu-
racy, but does not preclude the data being used to derive a more
accurate measure of the solar radius or shape.

In this discussion we have concentrated on uncertainties in
the value of the solar radius. It is assumed that the solar dis-
tance is known to a much higher level of accuracy. The impor-
tant quantity is actually R�/D�; it is the combined uncertainty in
that ratio which determines the error.

9. Plasma effects

There are several ways that the solar corona can effect the radia-
tion passing through it that are generally only important at radio
wavelengths. Bastian (1994) discusses the scattering caused by
turbulence, and concludes that this limits the resolution of so-
lar radio observations to a few arc seconds at centimeter wave-
lengths, with the effect scaling as λ2 at shorter wavelengths.

The solar corona is also capable of refracting radio waves.
For a rarefied plasma, the index of refraction can be approxi-
mated as

μ =
√

1 − 4πNe2/(mω2) (5)

(Lang 1980), where N is the electron number density, e is the
electron charge, m is the electron mass, and ω is the angular
frequency. Thus, the deflection dθ of a ray traversing a distance
dx is given by

dθ =
2πe2

μ2mω2

(
dN
dy

)
dx, (6)

where dN/dy is the density gradient perpendicular to the wave
propagation. In the regime where μ ≈ 1, the deflection scales
as λ2.

The amount of refraction occurring in any given observation
will depend on the detailed structure of the corona traversed.
However, we can get a rough idea of the importance of refrac-
tion at a given wavelength by modeling the corona with the
expression

N = 108(0.036r−1.5 + 1.55r−62.99r−16) cm−3 (7)

from Cox (2000), and integrating Eq. (6) for a ray originating at
the solar limb towards an observer at 1 AU Near the Sun, where
the gradient is strongest, this ray would be mostly perpendicu-
lar to the density gradient, and would experience the maximum
refraction. For a wavelength λ = 10 cm, this works out to a
deflection of about 0.◦5. In other words, a radio source appear-
ing to come from just above the limb would actually be from a
source with a heliographic position 0.◦5 degrees behind the limb.
The angle of refraction does not translate directly into a shift in
the plane of sky position. In the above example, that shift would
be ∼2′′.

Refraction is particularly important at wavelengths in the
meter to kilometer range. Generally speaking, the term refrac-
tion is reserved for the effect of the smoothly varying compo-
nent of the corona, while the effect of density fluctuations is de-
scribed as scattering, even though the physical mechanism for
both is the same. Thejappa & MacDowall (2009) discuss the re-
fraction effects based on an interplanetary coronal model, and
find that refraction is important when determining the source lo-
cation through triangulation at hectometric to kilometric wave-
lengths. The same authors also studied the effects of scattering
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Fig. 2. Geometry illustrating gravitational deflection of a limb source S .
The solar mass has been increased by a factor of 105 for illustrative pur-
poses. The angle O′-P-O represents the total deflection of light, while
the much smaller angle L-O-P represents the apparent displacement of
the source as seen by the observer.

from density fluctuations, and showed that these fluctuations in-
crease the apparent size of the solar diameter by several arc min-
utes at 50 MHz (Thejappa & MacDowall 2008). Hoang et al.
(1998) found that the combined effects of refraction and scat-
tering caused the apparent location of a type II radio burst from
Ulysses observations on 8 January 1997 to be off by several AU
from the true location.

When a strong magnetic field is applied to the plasma,
Eq. (6) is modified to take into account not only the plasma
frequency ωp =

√
4πNe2/m, but also the gyrofrequency ωB =

πeB/(mc), where B is the magnetic field strength (Ramaty 1969).
A complete discussion of this topic is beyond the scope of this
article. However, through most of the corona one can make the
symplifying assumption that ωp � ωB, and use Eq. (6).

10. Gravitational deflection

General relativity predicts that star light grazing the solar surface
will be deflected by ∼1.′′75, with the effect dropping as 1/θ2

ρ.
VLBI observations have confirmed this result to very high ac-
curacy (Shapiro et al. 2004). However, we are concerned with
the behavior of radiation emitted close to the Sun, where as in
the case of refraction, the amount of deflection does not trans-
late directly into a shift in the image position. For example, a
photon emitted at the solar limb would experience a deflection
half that of a star, or ∼0.′′875. This should be interpreted not as
a shift in plane-of-sky coordinates, but primarily as a shift in the
heliographic coordinates.

The first order general relativistic solution for the motion of
a photon in the Sun’s gravitational field is

ψ = sin−1 r0

r
− GM

r0c2

⎛⎜⎜⎜⎜⎜⎝
√

1 −
(r0

r

)2
+

√
r − r0

r + r0

⎞⎟⎟⎟⎟⎟⎠ (8)

where r, ψ are the polar coordinates of the ray path, and r0 is the
point of closest approach (Weinberg 1972). The quantity r0 is
related to the impact parameter b, and to first order r0 ≈ b. For
a source on the limb, we can set r0 = R�, evaluate Eq. (8) in the
neighborhood of r = 1 AU, and trace this back to the apparent
position of the limb. When this is done, we find that the apparent
solar radius is about 0.′′002 larger than the geometric value.

The geometry is illustrated in Fig. 2, where the solar mass
has been increased by a factor of 105 to allow the effects to be
visible. Light emitted by the source S in the direction O′ is grav-
itationally deflected to be seen by the observer O. The point P
marks the intersection of the original and final directions of prop-
agation. The angle O′-P-O therefore is the total amount of de-
flection. When the actual solar mass is used, this angle is 0.′′875

Table 1. Effects which need to be taken into account to achieve photo-
spheric accuracies on the solar disk ranging from 1′′ down to 0.′′001, as
seen by an observer at 1 AU.

Accuracy Effects
>1′′ Perspective

Parallax near L1
Refraction/scattering (radio)

>0.′′1 Parallax for geostationary satellites

>0.′′01 Speed-of-light (planetary aberration)
Terrestrial parallax
Perspective between L1 and Earth

>0.′′001 Spherical projection
Optical axis determination
Solar radius uncertainties
Gravitational deflection

as expected. The point L marks the geometric position of the
limb relative to O. The angle L-O-P represents the change in ap-
parent position of the limb in the plane of the sky, and is much
smaller than the deflection.

11. Conclusions

The relative importance of the various effects discussed in this
paper are summarized in Table 1 for the solar disk seen from
1 AU. Most of these effects are only important for high preci-
sion measurements, and can be safely ignored when only modest
accuracy is required.

Typical solar data analysis is carried out in the small-angle
regime where no distinction is made between angular and planar
coordinates – in Paper I this was referred to as pseudo-angles.
The present work validates that approach when only modest ac-
curacy (>0.′′1) is required, and when the field-of-view doesn’t
exceed more than a few solar radii. Although the pseudo-angles
of Paper I were defined to lie on the plane perpendicular to the
Sun-observer line, the analysis of Sect. 5 shows that the results
are not significantly affected if the plane used is slightly inclined
to that of the formal definition. However, perspective effects are
still important when converting between helioprojective and he-
liographic coordinates.

Some effects which are small for photospheric measure-
ments become more significant as one moves out into the corona.
This is particularly true for spherical projection effects, which
can become quite important for large-angle coronagraphs.

The precisions of Table 1 can only be achieved if the in-
strumental effects and cross-instrument coalignments can be de-
termined to comparable or better precision. For high precision
work, one must also consider any optical distortions which oc-
cur in the image. One way to deal with optical distortion is by
a judicious selection of the projection used to describe the ob-
servation. There is also a standard in development for how to
encode distortions within FITS files (Calabretta et al. 2004).

Table 2 lists the FITS keywords introduced in the present
work. Paper I also introduced the keyword CAR_ROT to store the
Carrington rotation number, plus a family of keywords ending in
“_OBS” based on the labels of Tables 1 and 3 in that work.

An important effect on solar coordinates is differential solar
rotation. This primarily affects data sets which are a combination
of observations over a period of time, such as slit spectrograph
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Table 2. FITS keywords introduced in this paper. Each is expressed in
units of meters.

Keyword Description
CARX_OBS Carrington x coordinate of observer
CARY_OBS Carrington y coordinate of observer
CARZ_OBS Carrington z coordinate of observer
RSUN_REF Value of R� used in determining coordinates

raster scans, or synoptic maps. The scope of this topic is very
broad, and will be addressed in a future paper.

The coordinate systems of Paper I are based on the WCS
formalism established in Greisen & Calabretta (2002) and
Calabretta & Greisen (2002). We would also like to bring the
reader’s attention to Greisen et al. (2006), which further extends
the WCS system. The primary focus of that latter work is spec-
tral coordinates, but there are also aspects which apply to all
kinds of coordinates. Of particular interest is the table lookup
(TAB) projection, which can be used for a wide variety of oth-
erwise difficult to encode data. For example, the TAB projection
could be used for storing model calculations using adaptive mesh
refinement.
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